OPEN ETHERNET NETWORKING FOR MODERN AI/ML WORKLOADS A BLUEPRINT FOR BUILDING THE AI FACTORY ALAN HUANG Senior Product Manager SUJAY GUPTA Senior Solutions Manager SEPTEMBER 10, 2025 | 14:00 AM BST | 6:00 AM PT ## **Table of Contents** - Company Introductions - Al Solution Ecosystem - Hardware - Software - Use Case Deep Dive Ethernet Fabric for AI - Ethernet vs InfiniBand Brief - Summary and Future Development - Q&A ALAN HUANG Senior Product Manager ipinfusion** SUJAY GUPTA Senior Solutions Manager ## **IP Infusion Corporate Overview** #### **Product and Technology Leadership** ### **Total Network Disaggregation** # IP Infusion Advantages for Open Networking SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY Most Comprehensive Open NOS The Widest HW Solution Ecosystem Open Optics Ecosystem Centralized Monitoring and Management 24/7 Professional Support **600+**Modern Networking Features **40+**Supported Hardware Platforms **100+**Qualified Optical Transceivers ## **IP Infusion Client Roster** #### **NETWORK OPERATORS** #### **NETWORK EQUIPMENT MANUFACTURERS** ## **About Edgecore** Portfolio of Open Networking Products, Solutions and Services Delivering to Large Tier1's and Enterprise **Customers Worldwide** **Independent Branded Company** Accton Owned Subsidiary Since 2010 Worldwide Sales and Support, Headquartered in Hsinchu Taiwan Flexible Business Model Solutions Provider Oc**NOS** **Telecom** AI & Data Center Enterprise **NOS Software** # **About Accton:**The Parent Company of Edgecore With over 35 years of experience, Accton is a well-known technology ODM/JDM provider for global enterprises, recognized for <u>innovative technologies</u> and <u>manufacturing excellence</u>, earning a distinguished industry reputation. - Established in 1988 - Global operating sites extend across North America, Europe, and Asia - Number of Employees: 6,500 - 2024 Revenue: USD3.4 billion Manufacturing in **China** Space: 71,040 m² Manufacturing in Zhunan, Taiwan Space: 15,518 m² Manufacturing in **Vietnam** Space: 11,340 m² Office and Warehouse in the United States Brand new facility launched in 2024, in Zhubei, Taiwan ## Open Networking Solutions from Edge to Core SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY AI/Cloud Data Center Solutions Service Providers Solutions **Enterprise Solutions** ## **Edgecore Data Center Portfolio** IP Infusion OcNOS Qualified 2022 More than 50% of DC switches in 2nd largest marketplace 2025 World's largest Payment Gateway DC using Edgecore SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY Spine Switches Tomahawk family DCS511 32x 400G - TD4 - 12.8T DCS510 32x 400G - TH3 - 12.8T DCS520 64x 400G - TH4 - 25.6T Leaf Switches Trident family DC Mgmt/ Enterprise Switches Trident family 48x 1G, 4x 25G - TD3 - 480G EPS121 48x1G, 6x10G - TD3-X2 - 108G **EPS122** 48x1G(POE), 6x10G - TD3-X2 Al DC – a. High Radix b. Suits Leaf and Spine c. Low Latency d. E-W traffic Qualified with IP Infusion Enterprise/Cloud DC – a. 25/100/400G b. Over-Sub c. E-W and N-S traffic Edge-corE SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY IP Infusion OcNOS Qualified - by Use Case #### **Trident Family** - Higher Buffer than Tomahawk - Better QOS - Feature Rich(Virtualization, IP) AS5835-54T | DCS202 6x 100G, 48x 10G - TD3 - 1.08T AS7816-64X | DCS500 64x 100G - TH2 - 6.4T AS7726-32X | DCS204 32x 100G - TD3 - 6.4T AS9736-64D | DCS520 64x 400G - TH4 - 25.6T AS9726-32DB | DCS511 32x 400G - TD4 - 12.8T AS9817-64D AIS800-640/D 64x 800G - TH5 - 51.2T AS4625-54T | EPS121 **48x1G**, **6x10G** - TD3-X2 - 108G AS5835-54X | DCS201 6x 100G, 48x 10G - TD3 - 1.08T AS9716-32D | DCS510 32x 400G - TH3 - 12.8T 128 Gbps 1.08 - 2.0 Tbps 3.2 – 6.4 Tbps 12.8 - 25.6 Tbps 51.2 Tbps Al Fabric Switch ## **Edgecore Al Solution** Deployment proven, open standards-based disaggregated Networking OS providing high performance, extensive programmability, flexibility and interoperability #### **Data Center Switches** High performance, low latency switches for GPU interconnect and leaf/spine use cases, bringing advanced load balancing and congestion control features needed for the critical parts of your network #### **Edgecore GPU Server Portfolio** #### **GPU Servers (AGS Series)** State-of-the-art GPU servers for AI, machine learning, and data analytics to accelerate your most demanding workloads Intel Gaudi 2, Gaudi 3 AMD MI 300, MI 325 #### **Edgecore Al Rack Total Solution** #### **Transceivers and Cables** Enhance your network's performance and reliability with our high-quality transceivers and network cables, designed for seamless connectivity and superior data transmission # The Modern - Accelerated Compute Systems *Public cloud hosted GaaS v SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY - Next phase in Evolution of Computer Systems - Every new modern Server/Workstation now has compute accelerators to power today's modern applications #### Types of AI customers - Cloud service providers - Colo providers - Enterprises (various verticals: logistics, oil exploration, chemical, government, etc.) #### *Public cloud hosted GaaS vs on-prem AI DC cost comparison: Average 3-Year Reserved H100 public cloud price: 8,000 GPUs 8000 * \$3.00/hour * 24 hours/day * 365 days/year * 3 years = \$631M #### *On-prem AI DC 1,000 H100 GPU servers (8 GPUs per server): 1,000 * \$120K = \$120M 64 IP Infusion TH5 bundles + frontend-network/storage-fabric switches < \$3M 3Y power cost ~ \$37M (US industrial avg) 3Y TCO savings > 74% Cloud Based GPU GPU Accelerated Data Analytics Data scientists, researchers and developers Multi-GPU Based Data Centers Gives Data Locality, Model Training and Tuning Capabilities – Serves as the foundation for organizations in the Al maturity cycle Deployment Platforms which can Infer at Real Time ## Al Stack and Performance **Application** **Platform** **Acceleration Libraries** System Software Example: CUDA/DOCA/Magnum IO/Base Command/Forge Hardware GPU's, CPU's, DPU's, NIC, Switch, Optics ## GPU's have different architectures for different workloads: - Large Scale LLM Training and Inference NVIDIA B200, H100 AMD MI 300, MI 325 Intel Gaudi - Data Analytics, Conversational AI, Language Processing NVIDIA H100 - Gaming, 3D Rendering NVIDIA L405 - Machine Learning NVIDIA Grace #### Nature of GPU workloads - GPU's perform parallel processing, to maximize GPU efficiency the data must always be available. Which in turn requires High bandwidth with low latency and low jitter. - As AI models and related datasets are growing, there is a need for multi-GPU systems. - Certain AI models can be efficiently run on multi-GPU systems ## Multi-GPU Systems & Performance SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY - Overall performance of multi-GPU dependent on: Data Must Always be Available for the GPU' - Hardware - Data Management - ➤ GPU utilization - Network Configuration - GPU to GPU communication All to All PCIE not sufficient - Chip-to-Chip Interconnect technologies such as ('Nvlink + NvSwitch', AMD Infinity Fabric, UA link) #### **Multi GPU Systems** - Scale-Up Has inherent Weak Fault Tolerance - Scale-Out Has Robust Fault Tolerance - Network Topology - Bandwidth and Latency - Network Protocols - Data Transferring Techniques - Management Methods ## OcNOS AI/ML Use Case Review SEP. 10 | WEBINAR: **A BLUEPRINT FOR BUILDING THE AI FACTORY** ### **OcNOS Network Service Highlights** Powering AI/ML data center network #### Al Fabric (aka Backend Network) - Ethernet based Layer 3 IP network - Dynamic load balancing to avoid collision of long lasting elephant flows - •Lossless ROCEv2 (*RDMA over Converged Ethernet*) transport via PFC (*Priority Flow Control*) and ECN (*Explicit Congestion Notification*) - Efficient support for mixed traffic types via ETS (*Enhanced Traffic Selection*) ## Frontend Network (incl. External Connectivity & Storage Fabric) - EVPN-VxLAN overlay network - Dynamic load balancing to avoid collision of long lasting elephant flows - •Lossless ROCEv2 (*RDMA over Converged Ethernet*) transport via PFC (*Priority Flow Control*) and ECN (*Explicit Congestion Notification*) - Efficient support for mixed traffic types via ETS #### **Out-of-Band (OOB) Device Management** - Layer 2 and layer 3 feature support - Redundancy and availability - Access control and security # Scaling the Al Fabric – A Modular Approach SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY Rail Architecture - 32k GPU Example All switches are Tomahawk 5 8 RAILs 32 Spine PODs 8 RAILs OcNOS OCNOS OCNOS OCNOS OCNOS OCNOS 800G 64 Leaf PODs Oct DS OcNOS OcNOS OCNOS OCNOS OCNOS OCNOS Od OS OcNOS OCNOS OCNOS OCNOS Rail-as-a-separate-CLOS design 400G Each server's 8 GPUs is assigned to a 64 servers/512 specific rail 64 servers/512 **GPUs** Inter-GPU fabric on each server provides **GPUs** inter-rail GPU communication POD#1 POD#64 Rail 8 Rail 1 **Training** Layer 1-10 Layer 71-80 batches Al job x Scale-up GPU interconnect Benefits: number of switches is minimized (no super-spine and 5-stage CLOS), route scale Data passed to Data passed to next layer/rail is minimized next layer/rail ## Route Scale for 32K GPU AI Fabric What each leaf and spine must hold | | Leaf | Spine | |---------------|---|--| | Advertises | 64/32 local GPU IPs | Own loopback | | Receives | 4,064 routes (from all other leaves of the same rail + loopbacks of spine peers) | 4,160 routes (local GPU IPs on each of 64 leaf neighbors + loopbacks of leaf neighbor) | | Adj-RIB-In | 129,056 paths
(32-way ECMP per remote /32, single path for each spine peer loopback) | 4,160 paths (single path per each leaf neighbor for its local GPU IPs, single path for each leaf neighbor loopback) | | FIB | 4,064 routes (one shared 32-way ECMP next-hop group comprised of spine peers reused by all remote prefixes) | 4,160 routes (single next-hop switch for each route) | | Re-advertises | None | 4,160 / 32s to 64 leaf neighbors | Note: OcNOS supports BGP peer group, BGP graceful restart and HW based fast link failover to reduce BGP updates resulted from events like link failure and BGP control plane restart # AI/ML Workload and Management/Control Traffic Types | Traffic Type | Typical
Volume | Frequency | Purpose | Characteristics | Transport Fabric | | |--|---------------------|----------------------------------|--|---|---|-------------------------------| | 1. Gradient Synchronization / All-Reduce | Very High | Per step or iteration | Sync model parameters | Long-lived, high-
throughput,
latency sensitive | GPU <-> GPU | | | 2. Activation and
Feature Map
Data | Very High | Per step or iteration | Exchange intermediate tensors during model/ pipeline parallelism | Long-lived, high-
throughput,
latency sensitive | GPU <-> GPU | ➤ Al Fabric | | 3. Checkpointing | Moderate
to High | Periodic (every N minutes/steps) | Save model snapshots | Large, bursty file transfers | CPU <-> storage | | | 4. Bulk I/O | Moderate
to High | Periodic (every N minutes/steps) | Load training data /
write results | Large-volume,
often parallel | CPU <-> storage | Frontend | | 5. Control
Messaging | Low | Continuous, small bursts | Job coordination, sync | Small packets, periodic or bursty | worker nodes <->
monitoring/ management
system(s) | Network/
Storage
Fabric | | 6. Logs /
Telemetry | Very Low | Steady or bursty | Record metrics or events | Low rate, asynchronous | worker nodes <->
monitoring/ management
system(s) | Гарпс | # QoS setting Example for Each AI/ML Traffic Type SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY Al Fabric ETS Setting | Traffic Type | DSCP | 802.1p PCP | Forwarding
Class | Queue Number | Scheduling (within class) | PFC
Enabled | ECN Enabled | |--------------|--------------|------------|---------------------|-------------------------|----------------------------------|----------------|------------------------------| | CNP | 46 (EF) | 5 or 7 | CNP-LOSSLESS | 7 (Highest
Priority) | Strict Priority (SP) | YES | (N/A - source of ECN signal) | | RoCEv2 Data | 26
(AF31) | 3 or 4 | ROCE-
LOSSLESS | 4 (High Priority) | WRR / SP (if truly single class) | YES | YES | ### Frontend Network/ Storage Fabric **ETS Setting** | Traffic Type | DSCP | 802.1p PCP | Forwarding
Class | Queue Number | Scheduling (within class) | PFC
Enabled | ECN Enabled | |-------------------------------|--------------------|------------|---------------------|----------------|---------------------------|----------------|------------------------------| | CNP | 46 (EF) | 7 | CNP-LOSSLESS | 7 (Higher SP) | Strict Priority (SP) | YES | (N/A – source of ECN signal) | | AI/ML Storage I/O
(RoCEv2) | 26
(AF31) | 4 | STORAGE-
ROCE | 4 | WRR (min bandwidth) | YES | YES | | AI/ML
Management/Control | 46 (EF) | 5 | AI-CONTROL | 5 (Highest SP) | Strict Priority (SP) | NO | YES | | Logs / Telemetry | 0
(Default
) | 0 | BEST-EFFORT | 0 | WRR / DRR | NO | YES | # **Enabling Hop-by-Hop Lossless Transport via DCBX** SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY Leaf pushing PFC and ETS settings and application priority mapping to host via DCBX #### PFC: Which priorities have PFC enabled (e.g. priority 3) #### ETS: Priority-to-TC mapping, bandwidth allocation per TC #### **Application Priority:** Map UDP port to priority (e.g. request host to map $RoCEv2 \rightarrow CoS 3$) Leaf pushing PFC and ETS settings to spine via DCBX #### PFC: Which priorities have PFC enabled (e.g. priority 3) #### ETS: Priority-to-TC mapping, bandwidth allocation per TC Leaf pushing PFC and ETS settings to spine via DCBX #### PFC: Which priorities have PFC enabled (e.g. priority 3) #### ETS: Priority-to-TC mapping, bandwidth allocation per TC Leaf pushing PFC and ETS settings and application priority mapping to host via DCBX #### PFC: Which priorities have PFC enabled (e.g. priority 3) #### ETS: Priority-to-TC mapping, bandwidth allocation per TC #### **Application Priority:** Map UDP port to priority (e.g. request host to map RoCEv2 \rightarrow CoS 3) DCBX ensures every switch and NIC along the path reserves consistent bandwidth and maps CoS values to queues the same way ## **Dynamic Load Balancing (DLB)** Traditional ECMP hash-based link selection is fixed throughout the flow even when port load and port queue size change (destination prefix, packet hash) → output link/nexthop DLB dynamically selects output member link in an ECMP group (i.e. group of next hops for a destination prefix) for a flow (destination prefix, dynami $\hat{\mathbf{d}}$ index) \rightarrow output link/nexthop Dynamically change based on the following conditions Link utilization Queue depth / buffer pressure Packet drops LAG/ECMP member availability • Change of output link for a flow only takes effect for new flowlet to preserve in-order delivery Reactive Path Rebalancing (RPR) mode of DLB probabilistically reassigns a continuous incoming stream to a better quality (less loaded) egress member if quality is good by a configured delta # Network Observability – Example Sensor Paths SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY #### Per leaf | Metric category | Paths per interface | Interfaces | Total paths | |--|---------------------|------------------------------|-------------| | Interface counters | 1 | 80 (64 downlinks+16 uplinks) | 80 | | Optics metrics | 1 | 80 | 80 | | Queue stats (per-queue) | 8 | 80 | 640 | | Buffer depth (per-port) | 1 | 80 | 80 | | BGP neighbor state (1 per uplink port) | 1 | 16 | 32 | | Grand Total | | | 912 paths | ### Per spine | Metric category | Paths per interface | Interfaces | Total paths | |---------------------------------|---------------------------|------------|-------------| | Interface counters | 1 | 32 | 32 | | Optics metrics | 9 (1 module + 8 per-lane) | 32 | 288 | | Queue stats (per-queue) | 8 | 32 | 256 | | Buffer depth (per-queue) | 8 | 32 | 256 | | BGP neighbor state (1 per port) | 1 | 32 | 64 | | Grand Total | | | 896 paths | #### **Optional paths** (for more granularity) - Per-lane optics metrics for media side (8 lanes/port) in addition to per-port module level optics metrics - Per-queue buffer depth - Optional per-lane optics can be enabled only on spines to monitor fiber links - Although per-queue buffer depth monitoring is more critical on leaves, leaves already have many sensor paths Real-time gNMI **Telemetry** SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY - Reserve lossless queues per job - Program/reprogram priorityto-traffic-class mapping and bandwidth per job - Activate dynamic load balancing on job specific links OcNOS Edgecore Al Fabric Automation Platform Al Job Orchestrator / Al Framework | Rail | Link
Utilization | Buffer
Depth | Action | |------|---------------------|-----------------|---| | 1 | 90% | High | Offload gradient aggregation to rail 2 GPUs temporarily | | 2 | 30% | Low | Additionally perform Layer 1's gradient aggregation temporarily | | 3 | 50% | Medium | Normal scheduling | | 4 | 10% | Low | Start next micro-batch from rail 4 instead of rail 1 (i.e. rail 4 -> Layer 1) | ## **Driving GPU Efficiency with Efficient** Networking SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY #### **Key Design Considerations** - Usage of RDMA High Bandwidth flows and Utilization - Usage of Low Jitter Tolerance - Design Network for Non-Blocking paths with High Bandwidth - **Predictive Performance** Single or few workloads ΑI Extremely Large Models **Factories** One/Few users Multi Tenant Variety of Workloads **Ethernet** InfiniBand Less complex jobs AI Cloud Increasing AI workloads and Large-Scale Gen AI training has shown standard Ethernet to be slow. #### **ROCE (RDMA over Converged Ethernet)** - ROCEv2 (RDMA over Converged Ethernet) uses IB packet header and encapsulates with UDP header - Efficient data transfer where the OS is bypassed and enables fast access to remote data - Supports message passing, sockets, and storage protocols - Support by all major operating systems - ROCE is an Open Source and a formal IBTA (Infiniband Trade Association) standard ## RDMA, RoCEv2 and UEC UEC is enhancing RoCEv2 drawbacks and improve in many layers that ideal for mixing workloads # Driving GPU Efficiency with Efficient Networking SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY | Dimension | InfiniBand (IB) | iWARP | RoCE v2 | |-------------------------|--|---|--| | Specification / Release | IBTA Spec 1.0 (2000) | IETF RDDP (2003) | IBTA Annex 17 (2014) | | Wire format | Native IB frame | IB frame carried in TCP/IP | IB frame carried in UDP/IP (UDP 4791) [RoCE v1 was L2 Hdr, with v2 it supports L3 is routeable with ECMP and DLB] | | Layer reach | Proprietary L1/L2 switched fabric | Routable Layer-3; crosses subnets | Routable Layer-3; crosses subnets | | Switching & control | IB switches + Subnet Manager | Standard Ethernet/IP switching & routing; no PFC required | Lossless Ethernet switches with PFC | | Lossless guarantee | Built-in credit-based flow control | No lossless fabric needed; TCP is reliable & in-order, tolerates loss/retransmit | PFC | | Congestion control | IB-CC (link-level credits) | TCP window/ECN (Reno/CUBIC/DCTCP, etc.) — window-based | DCQCN most common (Reactive CC w/ ECN) | | CPU involvement | Near-zero copy RDMA; minimal CPU | Same as IB | Same as IB | | Scalability limits | Tens of thousands of nodes per fabric (topology-dependent) | Scales with IP routing—data-center or multi-DC | Scales with IP routing—data-center or multi-DC | | Typical deployments | HPC supercomputers, AI clusters that value lowest latency | - | Large Al clusters, cloud RDMA services, multi-site fabrics | | Strengths | Lowest latency, mature HPC software stack | No PFC required ; works on standard IP networks; resilient to loss/reorder (TCP) | L3 routeability, coexists with traditional IP, flexible | | Weaknesses | Requires dedicated hardware & management; higher CapEx | Higher TCP/IP latency, small ecosystem | Adds UDP/IP overhead; still needs PFC/ECN tuning for true lossless ness [Go-Back N Retransmission – requires lossless and In-order delivery] | Latency: IB<RoCEv2<i-WARP ## **UEC – Building Blocks** **AIFH** – Allows for smaller packet size required and sufficient for Fabric communication **UR** – Mechanism to allow for link partners to request retransmission upon FEC failures **CBFC** – Targets to provide link layer level lossless operations for VC #### **Credit Based Flow Control** - Targets to provide link-layer lossless operations for each lossless VC over links between two peer devices to enable lossless buffering in Rx devices. - Virtual Channel represents parts of port traffic and can be flexibly configured as lossless or lossy - At receiver end - Pre-allocate for a port in Rx device headroom buffer space for lossless traffic - Generate credit generation based on port buffer availability in receiver - Advertise credits to Tx device - CBFC Credit messages are used for transmission of credits from receiver to sender - The sender keeps track of the available credits and its scheduler is allowed to schedule a VC queue only if it has credits #### Al Fabric Header for Routed Flows - · Reduced IPG (Inter-Packet Gap) - 1B to 8B based on packet alignment (vs. Ethernet standard 12B) - · Optimized Fabric Header: Fields [] Are Optional | | the state of s | | | | |---------|--|-------------|---------------------|---------------------------| | DA (6B) | SA (6B) | [VLAN (4B)] | AFH
Ethtype (2B) | [AFH_Extension (0B - 4B)] | - Retains Ethernet-like structure for coexistence with IPv4/v6 - Minimize overhead for small packets by combining L2 (MAC) and L3 (IP) headers - Addressing is overlaid on SA/DA, usable for single-tier (eg scale-up) and multi-tier (eg scale-out) fabrics - Ethertype indicates the presence of a AFH_Hdr or a standard header such as IPv4/v6 - VLAN tag is optional (eg for security) - AFH_Hdr includes fields commonly used for routing (hop count, traffic class, congestion, etc.) - Allows for coexistence with standard IPv4/v6 packets and interop with standard MACs - Supports ECN and other fabric notifications - · AFH format is user-defined - AFH Address space (# address bits) can be defined by system designer - AFH EtherType determines AFH Extension Size, which can be 0, 2, 3, or 4 bytes - TU can simultaneously support two different AFH formats with different AFH Ethertypes NOTE: AFH was developed prior to UEC, and while AFH and the UEC's Unified Forwarding Header (UFH) have some similarities, they are distinct and not equivalent #### **Link-Layer Retry Architecture** #### LLR Scope - LLR retransmits packets due to FEC/CRC errors on a full duplex Ethernet link - Much faster recovery than end-to-end "TCP level" retransmission - LLR does not protect against dropped packets due to buffer congestion #### LLR Architecture - Ethernet extensions: - A sequence number is placed in each packet's preamble. - Data receiver sends ACK/NACK messages (8B Control Ordered Set) for correctly or incorrectly received packets. - MAC TX contains replay buffer to support retransmission upon receiving NACK. - After receiving NACK, packet stream replays from lost or corrupted packet - It is a Go-back-N packet-based protocol. - Initialization Sequence - Handshake between link partners to reset starting sequence numbers before sending traffic SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY ### Energy-efficient ASICs and optics reduce power per Gbps, aligning with green Data Center narrative New Paradigm for Al Interconnect: Includes Features from Copper SerDes and Optical DSPs - 800G DPO\$ to 800G LPO\$ = up to 50% saving - Generic 800G 2xDR4 power consumption is 14.5W while 800G LPO is typical 7.5W, reflecting 48%+ saving 3 #### **Cut Down TCO: Electrical Cable for Short-Reach Connection** - Direct Attach Copper (DAC) - Active Electrical Cable (AEC) ET7502-DAC-xM | | 400G DR Optical
Transceiver | 400G AEC Cable | 400G DAC Cable | |-------------------|--------------------------------|----------------|----------------| | Max Length | 500 meters | 7 meters | 3 meters | | Power consumption | 10 watt | 5 watt | 0.3 watt | Max length and power consumption for 400G connectivity #### **Cut Down TCO: LPO Module + Fiber Cable** - Linear-drive Pluggable Optics (LPO) - · After eliminating some DSP modules - Lower power consumption - Lower latency - Need tuning per model per port | | 800G DR Optical Transceiver | 800G LPO Module | | |-------------------|-----------------------------|-------------------------|--| | Latency | 50~70 nanosecond | Less than 10 nanosecond | | | Power consumption | Typical 14.5 watt | Typical 7.5 watt | | Latency and power consumption for 800G connectivity Incredibly Strong Industry Reception: 100+ Companies Worldwide #### **UEC Target Networks** Ultra **Ethernet** # OcNOS AI/ML Solution Customer Benefits SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY AI/ML Networks with RDMA over InfiniBand AI/ML Networks with RDMA over Converged Ethernet (RoCE) Choose **Edgecore** and **OcNOS Ethernet Fabric** for you Al Cluster if you need: ### **Ubiquity and Interoperability** Seamless integration with existing network infrastructure + modern Al networking stack #### **Mature Open Ecosystem** Widest and rapidly evolving ecosystem of compatible AI switches and optics with global support ### **Superior TCO** Ready to deploy open networking solution with perpetual licensing, and leading support pricing ### **WEBINAR:** **OPEN ETHERNET NETWORKING FOR MODERN** AI/ML WORKLOADS BUILDING THE AI FACTORY **ALAN HUANG Senior Product Manager** infusion **SUJAY GUPTA Senior Solutions Manager** ### **WEBINAR:** OPEN ETHERNET NETWORKING FOR MODERN AI/ML WORKLOADS BUILDING THE AI FACTORY # THANKYOU www.ipinfusion.com www.edge-core.com ## Switch - Optics - NIC Edge-corE **i**pinfusion™