

OPEN ETHERNET NETWORKING FOR MODERN AI/ML WORKLOADS

A BLUEPRINT FOR BUILDING THE AI FACTORY

ALAN HUANG Senior Product Manager

SUJAY GUPTA
Senior Solutions Manager

SEPTEMBER 10, 2025 | 14:00 AM BST | 6:00 AM PT

Table of Contents

- Company Introductions
- Al Solution Ecosystem
 - Hardware
 - Software
- Use Case Deep Dive Ethernet Fabric for AI
- Ethernet vs InfiniBand Brief
- Summary and Future Development
- Q&A

ALAN HUANG
Senior Product Manager

ipinfusion**

SUJAY GUPTA Senior Solutions Manager

IP Infusion Corporate Overview

Product and Technology Leadership

Total Network Disaggregation

IP Infusion Advantages for Open Networking

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Most Comprehensive Open NOS

The Widest HW Solution Ecosystem

Open Optics Ecosystem

Centralized Monitoring and Management

24/7 Professional Support

600+Modern Networking Features

40+Supported Hardware Platforms

100+Qualified Optical Transceivers

IP Infusion Client Roster

NETWORK OPERATORS

NETWORK EQUIPMENT MANUFACTURERS

About Edgecore

Portfolio of Open Networking Products, Solutions and Services

Delivering to Large Tier1's and Enterprise **Customers Worldwide**

Independent Branded Company Accton Owned Subsidiary Since 2010

Worldwide Sales and Support, Headquartered in Hsinchu Taiwan

Flexible Business Model Solutions Provider

Oc**NOS**

Telecom

AI & Data Center Enterprise

NOS Software

About Accton:The Parent Company of Edgecore

With over 35 years of experience, Accton is a well-known technology ODM/JDM provider for global enterprises, recognized for <u>innovative technologies</u> and <u>manufacturing excellence</u>, earning a distinguished industry reputation.

- Established in 1988
- Global operating sites extend across North America, Europe, and Asia
- Number of Employees: 6,500
- 2024 Revenue: USD3.4 billion

Manufacturing in **China** Space: 71,040 m²

Manufacturing in Zhunan, Taiwan Space: 15,518 m²

Manufacturing in **Vietnam** Space: 11,340 m²

Office and Warehouse in the United States

Brand new facility launched in 2024, in Zhubei, Taiwan

Open Networking Solutions from Edge to Core

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

AI/Cloud Data Center Solutions

Service Providers
Solutions

Enterprise Solutions

Edgecore Data Center Portfolio

IP Infusion OcNOS Qualified

2022

More than 50% of DC switches in 2nd largest marketplace

2025

World's largest Payment Gateway DC using Edgecore

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Spine Switches Tomahawk family

DCS511
32x 400G - TD4 - 12.8T

DCS510
32x 400G - TH3 - 12.8T

DCS520 64x 400G - TH4 - 25.6T

Leaf Switches Trident family

DC Mgmt/ Enterprise Switches Trident family

48x 1G, 4x 25G - TD3 - 480G

EPS121
48x1G, 6x10G - TD3-X2 - 108G

EPS122 48x1G(POE), 6x10G - TD3-X2

Al DC – a. High Radix b. Suits Leaf and Spine c. Low Latency d. E-W traffic

Qualified with IP Infusion

Enterprise/Cloud DC – a. 25/100/400G b. Over-Sub c. E-W and N-S traffic

Edge-corE

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

IP Infusion OcNOS Qualified - by Use Case

Trident Family

- Higher Buffer than Tomahawk
- Better QOS
- Feature Rich(Virtualization, IP)

AS5835-54T | DCS202 6x 100G, 48x 10G - TD3 - 1.08T

AS7816-64X | DCS500 64x 100G - TH2 - 6.4T

AS7726-32X | DCS204 32x 100G - TD3 - 6.4T

AS9736-64D | DCS520 64x 400G - TH4 - 25.6T

AS9726-32DB | DCS511

32x 400G - TD4 - 12.8T

AS9817-64D AIS800-640/D

64x 800G - TH5 - 51.2T

AS4625-54T | EPS121 **48x1G**, **6x10G** - TD3-X2 - 108G

AS5835-54X | DCS201 6x 100G, 48x 10G - TD3 - 1.08T

AS9716-32D | DCS510 32x 400G - TH3 - 12.8T

128 Gbps 1.08 - 2.0 Tbps

3.2 – 6.4 Tbps

12.8 - 25.6 Tbps

51.2 Tbps

Al Fabric Switch

Edgecore Al Solution

Deployment proven, open standards-based disaggregated Networking OS providing high performance, extensive programmability, flexibility and interoperability

Data Center Switches

High performance, low latency switches for GPU interconnect and leaf/spine use cases, bringing advanced load balancing and congestion control features needed for the critical parts of your network

Edgecore GPU Server Portfolio

GPU Servers (AGS Series)

State-of-the-art GPU servers for AI, machine learning, and data analytics to accelerate your most demanding workloads Intel Gaudi 2, Gaudi 3 AMD MI 300, MI 325

Edgecore Al Rack Total Solution

Transceivers and Cables

Enhance your network's performance and reliability with our high-quality transceivers and network cables, designed for seamless connectivity and superior data transmission

The Modern - Accelerated Compute Systems *Public cloud hosted GaaS v

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

- Next phase in Evolution of Computer Systems
- Every new modern Server/Workstation now has compute accelerators to power today's modern applications

Types of AI customers

- Cloud service providers
- Colo providers
- Enterprises (various verticals: logistics, oil exploration, chemical, government, etc.)

*Public cloud hosted GaaS vs on-prem AI DC cost comparison:

Average 3-Year Reserved H100 public cloud price: 8,000 GPUs 8000 * \$3.00/hour * 24 hours/day * 365 days/year * 3 years = \$631M

*On-prem AI DC

1,000 H100 GPU servers (8 GPUs per server):
1,000 * \$120K = \$120M
64 IP Infusion TH5 bundles + frontend-network/storage-fabric switches < \$3M
3Y power cost ~ \$37M (US industrial avg)
3Y TCO savings > 74%

Cloud Based GPU GPU Accelerated Data Analytics

Data scientists, researchers and developers

Multi-GPU Based Data Centers

Gives Data Locality, Model Training and Tuning Capabilities – Serves as the foundation for organizations in the Al maturity cycle Deployment
Platforms
which can
Infer at Real
Time

Al Stack and Performance

Application

Platform

Acceleration Libraries

System Software

Example: CUDA/DOCA/Magnum IO/Base
Command/Forge

Hardware GPU's, CPU's, DPU's, NIC, Switch, Optics

GPU's have different architectures for different workloads:

- Large Scale LLM Training and Inference NVIDIA B200, H100 AMD MI 300, MI 325 Intel Gaudi
- Data Analytics, Conversational AI, Language Processing
 NVIDIA H100
- Gaming, 3D Rendering NVIDIA L405
- Machine Learning NVIDIA Grace

Nature of GPU workloads

- GPU's perform parallel processing, to maximize GPU efficiency the data must always be available. Which in turn requires High bandwidth with low latency and low jitter.
- As AI models and related datasets are growing, there is a need for multi-GPU systems.
- Certain AI models can be efficiently run on multi-GPU systems

Multi-GPU Systems & Performance

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

- Overall performance of multi-GPU dependent on:
 Data Must Always be Available for the GPU'
- Hardware
- Data Management
- ➤ GPU utilization
- Network Configuration
- GPU to GPU communication All to All PCIE not sufficient
- Chip-to-Chip Interconnect technologies such as ('Nvlink + NvSwitch', AMD Infinity Fabric, UA link)

Multi GPU Systems

- Scale-Up Has inherent Weak Fault Tolerance
- Scale-Out Has Robust Fault Tolerance

- Network Topology
- Bandwidth and Latency
- Network Protocols
- Data Transferring Techniques
- Management Methods

OcNOS AI/ML Use Case Review

SEP. 10 | WEBINAR: **A BLUEPRINT FOR BUILDING THE AI FACTORY**

OcNOS Network Service Highlights

Powering AI/ML data center network

Al Fabric (aka Backend Network)

- Ethernet based Layer 3 IP network
- Dynamic load balancing to avoid collision of long lasting elephant flows
- •Lossless ROCEv2 (*RDMA over Converged Ethernet*) transport via PFC (*Priority Flow Control*) and ECN (*Explicit Congestion Notification*)
- Efficient support for mixed traffic types via ETS (*Enhanced Traffic Selection*)

Frontend Network (incl. External Connectivity & Storage Fabric)

- EVPN-VxLAN overlay network
- Dynamic load balancing to avoid collision of long lasting elephant flows
- •Lossless ROCEv2 (*RDMA over Converged Ethernet*) transport via PFC (*Priority Flow Control*) and ECN (*Explicit Congestion Notification*)
- Efficient support for mixed traffic types via ETS

Out-of-Band (OOB) Device Management

- Layer 2 and layer 3 feature support
- Redundancy and availability
- Access control and security

Scaling the Al Fabric – A Modular Approach

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Rail Architecture - 32k GPU Example All switches are Tomahawk 5 8 RAILs 32 Spine PODs 8 RAILs OcNOS OCNOS OCNOS OCNOS OCNOS OCNOS 800G 64 Leaf PODs Oct DS OcNOS OcNOS OCNOS OCNOS OCNOS OCNOS Od OS OcNOS OCNOS OCNOS OCNOS Rail-as-a-separate-CLOS design 400G Each server's 8 GPUs is assigned to a 64 servers/512 specific rail 64 servers/512 **GPUs** Inter-GPU fabric on each server provides **GPUs** inter-rail GPU communication POD#1 POD#64 Rail 8 Rail 1 **Training** Layer 1-10 Layer 71-80 batches Al job x Scale-up GPU interconnect Benefits: number of switches is minimized (no super-spine and 5-stage CLOS), route scale Data passed to Data passed to next layer/rail is minimized next layer/rail

Route Scale for 32K GPU AI Fabric

What each leaf and spine must hold

	Leaf	Spine
Advertises	64/32 local GPU IPs	Own loopback
Receives	4,064 routes (from all other leaves of the same rail + loopbacks of spine peers)	4,160 routes (local GPU IPs on each of 64 leaf neighbors + loopbacks of leaf neighbor)
Adj-RIB-In	129,056 paths (32-way ECMP per remote /32, single path for each spine peer loopback)	4,160 paths (single path per each leaf neighbor for its local GPU IPs, single path for each leaf neighbor loopback)
FIB	4,064 routes (one shared 32-way ECMP next-hop group comprised of spine peers reused by all remote prefixes)	4,160 routes (single next-hop switch for each route)
Re-advertises	None	4,160 / 32s to 64 leaf neighbors

Note: OcNOS supports BGP peer group, BGP graceful restart and HW based fast link failover to reduce BGP updates resulted from events like link failure and BGP control plane restart

AI/ML Workload and Management/Control Traffic Types

Traffic Type	Typical Volume	Frequency	Purpose	Characteristics	Transport Fabric	
1. Gradient Synchronization / All-Reduce	Very High	Per step or iteration	Sync model parameters	Long-lived, high- throughput, latency sensitive	GPU <-> GPU	
2. Activation and Feature Map Data	Very High	Per step or iteration	Exchange intermediate tensors during model/ pipeline parallelism	Long-lived, high- throughput, latency sensitive	GPU <-> GPU	➤ Al Fabric
3. Checkpointing	Moderate to High	Periodic (every N minutes/steps)	Save model snapshots	Large, bursty file transfers	CPU <-> storage	
4. Bulk I/O	Moderate to High	Periodic (every N minutes/steps)	Load training data / write results	Large-volume, often parallel	CPU <-> storage	Frontend
5. Control Messaging	Low	Continuous, small bursts	Job coordination, sync	Small packets, periodic or bursty	worker nodes <-> monitoring/ management system(s)	Network/ Storage Fabric
6. Logs / Telemetry	Very Low	Steady or bursty	Record metrics or events	Low rate, asynchronous	worker nodes <-> monitoring/ management system(s)	Гарпс

QoS setting Example for Each AI/ML Traffic Type

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Al Fabric ETS Setting

Traffic Type	DSCP	802.1p PCP	Forwarding Class	Queue Number	Scheduling (within class)	PFC Enabled	ECN Enabled
CNP	46 (EF)	5 or 7	CNP-LOSSLESS	7 (Highest Priority)	Strict Priority (SP)	YES	(N/A - source of ECN signal)
RoCEv2 Data	26 (AF31)	3 or 4	ROCE- LOSSLESS	4 (High Priority)	WRR / SP (if truly single class)	YES	YES

Frontend Network/ Storage Fabric

ETS Setting

Traffic Type	DSCP	802.1p PCP	Forwarding Class	Queue Number	Scheduling (within class)	PFC Enabled	ECN Enabled
CNP	46 (EF)	7	CNP-LOSSLESS	7 (Higher SP)	Strict Priority (SP)	YES	(N/A – source of ECN signal)
AI/ML Storage I/O (RoCEv2)	26 (AF31)	4	STORAGE- ROCE	4	WRR (min bandwidth)	YES	YES
AI/ML Management/Control	46 (EF)	5	AI-CONTROL	5 (Highest SP)	Strict Priority (SP)	NO	YES
Logs / Telemetry	0 (Default)	0	BEST-EFFORT	0	WRR / DRR	NO	YES

Enabling Hop-by-Hop Lossless Transport via DCBX

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Leaf pushing PFC and ETS settings and application priority mapping to host via DCBX

PFC:

Which priorities have PFC enabled (e.g. priority 3)

ETS:

Priority-to-TC mapping, bandwidth allocation per TC

Application Priority:

Map UDP port to priority (e.g. request host to map $RoCEv2 \rightarrow CoS 3$)

Leaf pushing PFC and ETS settings to spine via DCBX

PFC:

Which priorities have PFC enabled (e.g. priority 3)

ETS:

Priority-to-TC mapping, bandwidth allocation per TC

Leaf pushing PFC and ETS settings to spine via DCBX

PFC:

Which priorities have PFC enabled (e.g. priority 3)

ETS:

Priority-to-TC mapping, bandwidth allocation per TC

Leaf pushing PFC and ETS settings and application priority mapping to host via DCBX

PFC:

Which priorities have PFC enabled (e.g. priority 3)

ETS:

Priority-to-TC mapping, bandwidth allocation per TC

Application Priority:

Map UDP port to priority (e.g. request host to map RoCEv2 \rightarrow CoS 3)

DCBX ensures every switch and NIC along the path reserves consistent bandwidth and maps CoS values to queues the same way

Dynamic Load Balancing (DLB)

 Traditional ECMP hash-based link selection is fixed throughout the flow even when port load and port queue size change

(destination prefix, packet hash) → output link/nexthop

 DLB dynamically selects output member link in an ECMP group (i.e. group of next hops for a destination prefix) for a flow

(destination prefix, dynami $\hat{\mathbf{d}}$ index) \rightarrow output link/nexthop

Dynamically change based on the following conditions Link utilization

Queue depth / buffer pressure

Packet drops

LAG/ECMP member availability

• Change of output link for a flow only takes effect for new flowlet to preserve in-order delivery

 Reactive Path Rebalancing (RPR) mode of DLB probabilistically reassigns a continuous incoming stream to a better quality (less loaded) egress member if quality is good by a configured delta

Network Observability – Example Sensor Paths

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Per leaf

Metric category	Paths per interface	Interfaces	Total paths
Interface counters	1	80 (64 downlinks+16 uplinks)	80
Optics metrics	1	80	80
Queue stats (per-queue)	8	80	640
Buffer depth (per-port)	1	80	80
BGP neighbor state (1 per uplink port)	1	16	32
Grand Total			912 paths

Per spine

Metric category	Paths per interface	Interfaces	Total paths
Interface counters	1	32	32
Optics metrics	9 (1 module + 8 per-lane)	32	288
Queue stats (per-queue)	8	32	256
Buffer depth (per-queue)	8	32	256
BGP neighbor state (1 per port)	1	32	64
Grand Total			896 paths

Optional paths (for more granularity)

- Per-lane optics metrics for media side (8 lanes/port) in addition to per-port module level optics metrics
- Per-queue buffer depth
- Optional per-lane optics can be enabled only on spines to monitor fiber links
- Although per-queue buffer depth monitoring is more critical on leaves, leaves already have many sensor paths

Real-time gNMI

Telemetry

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

- Reserve lossless queues per job
- Program/reprogram priorityto-traffic-class mapping and bandwidth per job
- Activate dynamic load balancing on job specific links

OcNOS Edgecore Al Fabric

Automation Platform

Al Job Orchestrator / Al Framework

Rail	Link Utilization	Buffer Depth	Action
1	90%	High	Offload gradient aggregation to rail 2 GPUs temporarily
2	30%	Low	Additionally perform Layer 1's gradient aggregation temporarily
3	50%	Medium	Normal scheduling
4	10%	Low	Start next micro-batch from rail 4 instead of rail 1 (i.e. rail 4 -> Layer 1)

Driving GPU Efficiency with Efficient Networking

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Key Design Considerations

- Usage of RDMA High Bandwidth flows and Utilization
- Usage of Low Jitter Tolerance
- Design Network for Non-Blocking paths with High Bandwidth
- **Predictive Performance**

Single or few workloads ΑI Extremely Large Models **Factories**

One/Few users

Multi Tenant

Variety of Workloads

Ethernet

InfiniBand

Less complex jobs

AI Cloud

Increasing AI workloads and Large-Scale Gen AI training has shown standard Ethernet to be slow.

ROCE (RDMA over Converged Ethernet)

- ROCEv2 (RDMA over Converged Ethernet) uses IB packet header and encapsulates with UDP header
 - Efficient data transfer where the OS is bypassed and enables fast access to remote data
 - Supports message passing, sockets, and storage protocols
 - Support by all major operating systems
 - ROCE is an Open Source and a formal IBTA (Infiniband Trade Association) standard

RDMA, RoCEv2 and UEC

UEC is enhancing RoCEv2 drawbacks and improve in many layers that ideal for mixing workloads

Driving GPU Efficiency with Efficient Networking

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

Dimension	InfiniBand (IB)	iWARP	RoCE v2
Specification / Release	IBTA Spec 1.0 (2000)	IETF RDDP (2003)	IBTA Annex 17 (2014)
Wire format	Native IB frame	IB frame carried in TCP/IP	IB frame carried in UDP/IP (UDP 4791) [RoCE v1 was L2 Hdr, with v2 it supports L3 is routeable with ECMP and DLB]
Layer reach	Proprietary L1/L2 switched fabric	Routable Layer-3; crosses subnets	Routable Layer-3; crosses subnets
Switching & control	IB switches + Subnet Manager	Standard Ethernet/IP switching & routing; no PFC required	Lossless Ethernet switches with PFC
Lossless guarantee	Built-in credit-based flow control	No lossless fabric needed; TCP is reliable & in-order, tolerates loss/retransmit	PFC
Congestion control	IB-CC (link-level credits)	TCP window/ECN (Reno/CUBIC/DCTCP, etc.) — window-based	DCQCN most common (Reactive CC w/ ECN)
CPU involvement	Near-zero copy RDMA; minimal CPU	Same as IB	Same as IB
Scalability limits	Tens of thousands of nodes per fabric (topology-dependent)	Scales with IP routing—data-center or multi-DC	Scales with IP routing—data-center or multi-DC
Typical deployments	HPC supercomputers, AI clusters that value lowest latency	-	Large Al clusters, cloud RDMA services, multi-site fabrics
Strengths	Lowest latency, mature HPC software stack	No PFC required ; works on standard IP networks; resilient to loss/reorder (TCP)	L3 routeability, coexists with traditional IP, flexible
Weaknesses	Requires dedicated hardware & management; higher CapEx	Higher TCP/IP latency, small ecosystem	Adds UDP/IP overhead; still needs PFC/ECN tuning for true lossless ness [Go-Back N Retransmission – requires lossless and In-order delivery]

Latency: IB<RoCEv2<i-WARP

UEC – Building Blocks

AIFH – Allows for smaller packet size required and sufficient for Fabric communication

UR – Mechanism to allow for link partners to request retransmission upon FEC failures

CBFC – Targets to provide link layer level lossless operations for VC

Credit Based Flow Control

- Targets to provide link-layer lossless operations for each lossless VC over links between two peer devices to enable lossless buffering in Rx devices.
 - Virtual Channel represents parts of port traffic and can be flexibly configured as lossless or lossy
- At receiver end
 - Pre-allocate for a port in Rx device headroom buffer space for lossless traffic
 - Generate credit generation based on port buffer availability in receiver
 - Advertise credits to Tx device
- CBFC Credit messages are used for transmission of credits from receiver to sender
- The sender keeps track of the available credits and its scheduler is allowed to schedule a VC queue only if it has credits

Al Fabric Header for Routed Flows

- · Reduced IPG (Inter-Packet Gap)
- 1B to 8B based on packet alignment (vs. Ethernet standard 12B)
- · Optimized Fabric Header: Fields [] Are Optional

	the state of the s			
DA (6B)	SA (6B)	[VLAN (4B)]	AFH Ethtype (2B)	[AFH_Extension (0B - 4B)]

- Retains Ethernet-like structure for coexistence with IPv4/v6
- Minimize overhead for small packets by combining L2 (MAC) and L3 (IP) headers
- Addressing is overlaid on SA/DA, usable for single-tier (eg scale-up) and multi-tier (eg scale-out) fabrics
- Ethertype indicates the presence of a AFH_Hdr or a standard header such as IPv4/v6
- VLAN tag is optional (eg for security)
- AFH_Hdr includes fields commonly used for routing (hop count, traffic class, congestion, etc.)
- Allows for coexistence with standard IPv4/v6 packets and interop with standard MACs
- Supports ECN and other fabric notifications
- · AFH format is user-defined
- AFH Address space (# address bits) can be defined by system designer
- AFH EtherType determines AFH Extension Size, which can be 0, 2, 3, or 4 bytes
- TU can simultaneously support two different AFH formats with different AFH Ethertypes

NOTE: AFH was developed prior to UEC, and while AFH and the UEC's Unified Forwarding Header (UFH) have some similarities, they are distinct and not equivalent

Link-Layer Retry Architecture

LLR Scope

- LLR retransmits packets due to FEC/CRC errors on a full duplex Ethernet link
 - Much faster recovery than end-to-end "TCP level" retransmission
- LLR does not protect against dropped packets due to buffer congestion

LLR Architecture

- Ethernet extensions:
 - A sequence number is placed in each packet's preamble.
- Data receiver sends ACK/NACK messages (8B Control Ordered Set) for correctly or incorrectly received packets.
- MAC TX contains replay buffer to support retransmission upon receiving NACK.
- After receiving NACK, packet stream replays from lost or corrupted packet
- It is a Go-back-N packet-based protocol.
- Initialization Sequence
- Handshake between link partners to reset starting sequence numbers before sending traffic

SEP. 10 | WEBINAR: A BLUEPRINT

FOR BUILDING THE AI FACTORY

Energy-efficient ASICs and optics reduce power per Gbps, aligning with green Data Center narrative

New Paradigm for Al Interconnect: Includes Features from Copper SerDes and Optical DSPs

- 800G DPO\$ to 800G LPO\$ = up to 50% saving
- Generic 800G 2xDR4 power consumption is 14.5W while 800G LPO is typical 7.5W, reflecting 48%+ saving

3

Cut Down TCO: Electrical Cable for Short-Reach Connection

- Direct Attach Copper (DAC)
- Active Electrical Cable (AEC)

ET7502-DAC-xM

	400G DR Optical Transceiver	400G AEC Cable	400G DAC Cable
Max Length	500 meters	7 meters	3 meters
Power consumption	10 watt	5 watt	0.3 watt

Max length and power consumption for 400G connectivity

Cut Down TCO: LPO Module + Fiber Cable

- Linear-drive Pluggable Optics (LPO)
- · After eliminating some DSP modules
 - Lower power consumption
 - Lower latency
 - Need tuning per model per port

	800G DR Optical Transceiver	800G LPO Module	
Latency	50~70 nanosecond	Less than 10 nanosecond	
Power consumption	Typical 14.5 watt	Typical 7.5 watt	

Latency and power consumption for 800G connectivity

Incredibly Strong Industry Reception: 100+ Companies Worldwide

UEC Target Networks

Ultra **Ethernet**

OcNOS AI/ML Solution Customer Benefits

SEP. 10 | WEBINAR: A BLUEPRINT FOR BUILDING THE AI FACTORY

AI/ML Networks with RDMA over InfiniBand

AI/ML Networks with RDMA over Converged Ethernet (RoCE)

Choose **Edgecore** and **OcNOS Ethernet Fabric** for you Al Cluster if you need:

Ubiquity and Interoperability

Seamless integration with existing network infrastructure + modern Al networking stack

Mature Open Ecosystem

Widest and rapidly evolving ecosystem of compatible AI switches and optics with global support

Superior TCO

Ready to deploy open networking solution with perpetual licensing, and leading support pricing

WEBINAR:

OPEN ETHERNET NETWORKING FOR MODERN AI/ML WORKLOADS BUILDING THE AI FACTORY

ALAN HUANG Senior Product Manager infusion

SUJAY GUPTA Senior Solutions Manager

WEBINAR:

OPEN ETHERNET NETWORKING FOR MODERN AI/ML WORKLOADS BUILDING THE AI FACTORY

THANKYOU

www.ipinfusion.com

www.edge-core.com

Switch - Optics - NIC

Edge-corE

ipinfusion™